Transformers for Natural Language Processing

The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers.

The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face.

The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification.

By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets.

Type
ebook
Category
publication date
2021-01-29
what you will learn

Use the latest pretrained transformer models
Grasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer models
Create language understanding Python programs using concepts that outperform classical deep learning models
Use a variety of NLP platforms, including Hugging Face, Trax, and AllenNLP
Apply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and more
Measure the productivity of key transformers to define their scope, potential, and limits in production

no of pages
384
duration
768
key features
Build and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning models * Go through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machine * Test transformer models on advanced use cases
approach
With a learn-as-you-do approach, you’ll progressively build your ability to implement different Python libraries with Transformers.
audience
Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers.
Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.
meta description
Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex.
short description
Being the first book in the market to dive deep into the Transformers, it is a step-by-step guide for data and AI practitioners to help enhance the performance of language understanding and gain expertise with hands-on implementation of transformers using PyTorch, TensorFlow, Hugging Face, Trax, and AllenNLP.
subtitle
Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more
keywords
Artificial intelligence, Deep Learning with Python, AI/ML, NLP Python, Transformers book, PyTorch NLP, Google bert
Product ISBN
9781800565791