Mastering Julia

Julia is a well-constructed programming language which was designed for fast execution speed by using just-in-time LLVM compilation techniques, thus eliminating the classic problem of performing analysis in one language and translating it for performance in a second.
This book is a primer on Julia’s approach to a wide variety of topics such as scientific computing, statistics, machine learning, simulation, graphics, and distributed computing.
Starting off with a refresher on installing and running Julia on different platforms, you’ll quickly get to grips with the core concepts and delve into a discussion on how to use Julia with various code editors and interactive development environments (IDEs).
As you progress, you’ll see how data works through simple statistics and analytics and discover Julia's speed, its real strength, which makes it particularly useful in highly intensive computing tasks. You’ll also and observe how Julia can cooperate with external processes to enhance graphics and data visualization. Finally, you will explore metaprogramming and learn how it adds great power to the language and establish networking and distributed computing with Julia.
By the end of this book, you’ll be confident in using Julia as part of your existing skill set.

Type
video
Category
publication date
2024-01-19
what you will learn

Develop simple scripts in Julia using the REPL, code editors, and web-based IDEs
Get to grips with Julia’s type system, multiple dispatch, metaprogramming, and macro development
Interact with data files, tables, data frames, SQL, and NoSQL databases
Delve into statistical analytics, linear programming, and optimization problems
Create graphics and visualizations to enhance modeling and simulation in Julia
Understand Julia's main approaches to machine learning, Bayesian analysis, and AI

no of pages
506
duration
1012
key features
Augment your basic computing skills with an in-depth introduction to Julia * Focus on topic-based approaches to scientific problems and visualisation * Build on prior knowledge of programming languages such as Python, R, or C/C++ * Purchase of the print or Kindle book includes a free PDF eBook
approach
After a brief introduction to code simple scripts, the next few chapters introduce major topics in Julia such as the type system, meta-programming and modularisation. The remainder of the book continues with practical discussions by separate topics, concluding with a look at some of the fringe features in Julia, such as optimal coding techniques, debugging and creating packages
audience
This book is not an introduction to computer programming, but a practical guide for developers who want to enhance their basic knowledge of Julia, or those wishing to augment their skill set by adding Julia to their existing roster of programming languages. Familiarity with a scripting language such as Python or R, or a compiled language such as C/C++, C# or Java, is a prerequisite.
meta description
A hands-on, code-based guide to leveraging Julia in a variety of scientific and data-driven scenarios
short description
This book covers the application of Julia v1.8.x in the areas of scientific computing and data science. The book will be of use to those with some previous knowledge of Julia or as a primer for programmers familiar with other scripting or compiled languages.
subtitle
Enhance your analytical and programming skills for data modeling and processing with Julia
keywords
Julia Programming, Scientific Computing, Data Processing, scientific computing c++, julia programming language, julia programming language books, julia programming books
Product ISBN
9781805129790