Data Labeling in Machine Learning with Python

Data labeling is the invisible hand that guides the power of artificial intelligence and machine learning. In today’s data-driven world, mastering data labeling is not just an advantage, it’s a necessity. Data Labeling in Machine Learning with Python empowers you to unearth value from raw data, create intelligent systems, and influence the course of technological evolution.
With this book, you'll discover the art of employing summary statistics, weak supervision, programmatic rules, and heuristics to assign labels to unlabeled training data programmatically. As you progress, you'll be able to enhance your datasets by mastering the intricacies of semi-supervised learning and data augmentation. Venturing further into the data landscape, you'll immerse yourself in the annotation of image, video, and audio data, harnessing the power of Python libraries such as seaborn, matplotlib, cv2, librosa, openai, and langchain. With hands-on guidance and practical examples, you'll gain proficiency in annotating diverse data types effectively.
By the end of this book, you’ll have the practical expertise to programmatically label diverse data types and enhance datasets, unlocking the full potential of your data.

Type
ebook
Category
publication date
2024-01-31
what you will learn

Excel in exploratory data analysis (EDA) for tabular, text, audio, video, and image data
Understand how to use Python libraries to apply rules to label raw data
Discover data augmentation techniques for adding classification labels
Leverage K-means clustering to classify unsupervised data
Explore how hybrid supervised learning is applied to add labels for classification
Master text data classification with generative AI
Detect objects and classify images with OpenCV and YOLO
Uncover a range of techniques and resources for data annotation

no of pages
398
duration
796
key features
Generate labels for regression in scenarios with limited training data * Apply generative AI and large language models (LLMs) to explore and label text data * Leverage Python libraries for image, video, and audio data analysis and data labeling * Purchase of the print or Kindle book includes a free PDF eBook
approach
This book starts with the introduction of exploratory data analysis using Python libraries and then covers the data labeling for tabular data, text data, image data, audio data using heuristics, semi-supervised learning, unsupervised learning and data augmentation. Finally, this book also delves into best practices and tools in the industry for data labeling.
audience
This book is for machine learning engineers, data scientists, and data engineers who want to learn data labeling methods and algorithms for model training. Data enthusiasts and Python developers will be able to use this book to learn data exploration and annotation using Python libraries. Basic Python knowledge is beneficial but not necessary to get started.
meta description
Take your data preparation, machine learning, and GenAI skills to the next level by learning a range of Python algorithms and tools for data labeling
short description
Discover data labeling methods through Python libraries, ML algorithms, and generative AI with this guide covering best practices, advanced methods, and tools. This book will simplify model training for regression, classification, and clustering.
subtitle
Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
keywords
Python for data analysis; Data analytics; Data science; Data book; Data collection; Data mining; AI/ML; data labels; NLP; Computer vision; Object detection
Product ISBN
9781804610541