Navigate the world of data analytics with Fundamentals of Analytics Engineering—guiding you from foundational concepts to advanced techniques of data ingestion and warehousing, data lakehouse, and data modeling. Written by a team of 7 industry experts, this book helps you to transform raw data into structured insights.
You’ll discover how to clean, filter, aggregate, and reformat data, and seamlessly serve it across diverse platforms. With practical guidance, you’ll also learn how to build a simple data platform using Airbyte for ingestion, Google BigQuery for warehousing, dbt for transformations, and Tableau for visualization. From data quality and observability to fostering collaboration on codebases, you’ll find effective strategies for ensuring data integrity and driving collaborative success. As you advance, you'll become well-versed with the CI/CD principles for automated code building, testing, and deployment—laying the foundation for consistent and reliable pipelines. With invaluable insights into gathering business requirements, documenting complex business logic, and the importance of data governance, you’ll develop a holistic understanding of the analytics lifecycle.
By the end of this book, you’ll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.
Design and implement data pipelines from ingestion to serving data
Explore best practices for data modeling and schema design
Gain insights into the use of cloud-based analytics platforms and tools for scalable data processing
Understand the principles of data governance and collaborative coding
Comprehend data quality management in analytics engineering
Gain practical skills in using analytics engineering tools to conquer real-world data challenges