Applied Geospatial Data Science with Python

Data scientists, when presented with a myriad of data, can often lose sight of how to present geospatial analyses in a meaningful way so that it makes sense to everyone. Using Python to visualize data helps stakeholders in less technical roles to understand the problem and seek solutions. The goal of this book is to help data scientists and GIS professionals learn and implement geospatial data science workflows using Python.
Throughout this book, you’ll uncover numerous geospatial Python libraries with which you can develop end-to-end spatial data science workflows. You’ll learn how to read, process, and manipulate spatial data effectively. With data in hand, you’ll move on to crafting spatial data visualizations to better understand and tell the story of your data through static and dynamic mapping applications. As you progress through the book, you’ll find yourself developing geospatial AI and ML models focused on clustering, regression, and optimization. The use cases can be leveraged as building blocks for more advanced work in a variety of industries.
By the end of the book, you’ll be able to tackle random data, find meaningful correlations, and make geospatial data models.

Type
ebook
Category
publication date
2023-02-28
what you will learn

Understand the fundamentals needed to work with geospatial data
Transition from tabular to geo-enabled data in your workflows
Develop an introductory portfolio of spatial data science work using Python
Gain hands-on skills with case studies relevant to different industries
Discover best practices focusing on geospatial data to bring a positive change in your environment
Explore solving use cases, such as traveling salesperson and vehicle routing problems

no of pages
308
duration
616
key features
Learn how to integrate spatial data and spatial thinking into traditional data science workflows * Develop a spatial perspective and learn to avoid common pitfalls along the way * Gain expertise through practical case studies applicable in a variety of industries with code samples that can be reproduced and expanded
approach
Our goal is that this book will help data scientists and GIS professionals develop a common understanding and shared vernacular, enabling them to properly incorporate geographic context into modeling, analysis and visualization. This book will begin with the fundamentals of GIS and data science before moving into detailed use cases leveraging end to end spatial data science workflows.
audience
This book is for you if you are a data scientist seeking to incorporate geospatial thinking into your workflows or a GIS professional seeking to incorporate data science methods into yours. You’ll need to have a foundational knowledge of Python for data analysis and/or data science.
meta description
Intelligently connect data points and gain a deeper understanding of environmental problems through hands-on Geospatial Data Science case studies written in Python
The book includes colored images of important concepts
short description
This is a book for anyone who wants to quickly learn to apply spatial thinking and leverage Geospatial Data Science in Python to better comprehend problem statements and come up with the best possible results.
subtitle
Leverage geospatial data analysis and modeling to find unique solutions to environmental problems
keywords
Geospatial, Geopython, Spatial Analysis
Product ISBN
9781803238128