Applied Machine Learning and High-Performance Computing on AWS

Machine learning (ML) and high-performance computing (HPC) on AWS run compute-intensive workloads across industries and emerging applications. Its use cases can be linked to various verticals, such as computational fluid dynamics (CFD), genomics, and autonomous vehicles.
This book provides end-to-end guidance, starting with HPC concepts for storage and networking. It then progresses to working examples on how to process large datasets using SageMaker Studio and EMR. Next, you’ll learn how to build, train, and deploy large models using distributed training. Later chapters also guide you through deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases.
By the end of this book, you’ll be able to build, train, and deploy your own large-scale ML application, using HPC on AWS, following industry best practices and addressing the key pain points encountered in the application life cycle.

Type
ebook
Category
publication date
2022-12-30
what you will learn

Explore data management, storage, and fast networking for HPC applications
Focus on the analysis and visualization of a large volume of data using Spark
Train visual transformer models using SageMaker distributed training
Deploy and manage ML models at scale on the cloud and at the edge
Get to grips with performance optimization of ML models for low latency workloads
Apply HPC to industry domains such as CFD, genomics, AV, and optimization

no of pages
382
duration
764
key features
Understand the need for high-performance computing (HPC) * Build, train, and deploy large ML models with billions of parameters using Amazon SageMaker * Learn best practices and architectures for implementing ML at scale using HPC
approach
Complete with step-by-step explanations of essential concepts and practical examples, you will begin by exploring virtually unlimited infrastructure and fast networking for scalable HPC on AWS, including an overview of relevant tools and technologies.
audience
The book begins with HPC concepts, however, it expects you to have prior machine learning knowledge. This book is for ML engineers and data scientists interested in learning advanced topics on using large datasets for training large models using distributed training concepts on AWS, deploying models at scale, and performance optimization for low latency use cases. Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale will also find the book useful.
meta description
Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker
short description
With this book, you’ll learn how to develop large-scale machine learning applications using high-performance computing on Amazon Web Services. In addition, you’ll understand architectural components, performance optimization, and real-world use cases in domains like genomics, autonomous vehicles, computational fluid dynamics, and numerical optimization.
subtitle
Accelerate the development of machine learning applications following architectural best practices
keywords
Machine Learning, Deep Learning, High-Performance Computing, GPU, AWS, Genomics, Autonomous Vehicles, Fluid Dynamics
Product ISBN
9781803237015