Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks.

With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field.

In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization.

In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.

Type
ebook
Category
publication date
2020-01-31
what you will learn

Understand the deep learning context of RL and implement complex deep learning models
Evaluate RL methods including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, D4PG, and others
Build a practical hardware robot trained with RL methods for less than $100
Discover Microsoft's TextWorld environment, which is an interactive fiction games platform
Use discrete optimization in RL to solve a Rubik's Cube
Teach your agent to play Connect 4 using AlphaGo Zero
Explore the very latest deep RL research on topics including AI chatbots
Discover advanced exploration techniques, including noisy networks and network distillation techniques

no of pages
826
duration
1652
key features
Second edition of the bestselling introduction to deep reinforcement learning, expanded with six new chapters * Learn advanced exploration techniques including noisy networks, pseudo-count, and network distillation methods * Apply RL methods to cheap hardware robotics platforms
approach
A practical hands-on exploration of deep reinforcement learning with an array of exercises and projects to help readers put theory into action.
audience
Some fluency in Python is assumed. Sound understanding of the fundamentals of deep learning will be helpful. This book is an introduction to deep RL and requires no background in RL
meta description
New edition of the bestselling guide to deep reinforcement learning and how it’s used to solve complex real-world problems. Revised and expanded to include multi-agent methods, discrete optimization, RL in robotics, advanced exploration techniques, and more
short description
With six new chapters, Deep Reinforcement Learning Hands-On Second edition is completely updated and expanded with the very latest reinforcement learning (RL) tools and techniques, providing you with an introduction to RL, as well as the hands-on ability to code intelligent learning agents to perform a range of practical tasks.
subtitle
Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more
keywords
Machine learning, NLP, Python machine learning, robots, coding robot, optimal control, continuous control
Product ISBN
9781838826994