Essential Statistics for Non-STEM Data Analysts

Statistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks.
The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You’ll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you’ll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you’ve uncovered the working mechanism of data science algorithms, you’ll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you’ll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning.
By the end of this Essential Statistics for Non-STEM Data Analysts book, you’ll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals.

Type
ebook
Category
publication date
2020-11-12
what you will learn

Find out how to grab and load data into an analysis environment
Perform descriptive analysis to extract meaningful summaries from data
Discover probability, parameter estimation, hypothesis tests, and experiment design best practices
Get to grips with resampling and bootstrapping in Python
Delve into statistical tests with variance analysis, time series analysis, and A/B test examples
Understand the statistics behind popular machine learning algorithms
Answer questions on statistics for data scientist interviews

no of pages
392
duration
784
key features
Work your way through the entire data analysis pipeline with statistics concerns in mind to make reasonable decisions * Understand how various data science algorithms function * Build a solid foundation in statistics for data science and machine learning using Python-based examples
approach
Chapters cover the introduction of essential statistical concepts, demonstration of ready-to-run Python codes, and extensive self-assessment questions.
audience
This book is an entry-level guide for data science enthusiasts, data analysts, and anyone starting out in the field of data science and looking to learn the essential statistical concepts with the help of simple explanations and examples. If you’re a developer or student with a non-mathematical background, you’ll find this book useful. Working knowledge of the Python programming language is required.
meta description
Reinforce your understanding of data science and data analysis from a statistical perspective to extract meaningful insights from your data using Python programming
short description
Put your data science knowledge to work with this practical guide to statistics. You’ll understand the working mechanism of each method used and find out how data science algorithms function. This book will help you learn the statistical techniques required for key model building and functioning using Python.
subtitle
Get to grips with the statistics and math knowledge needed to enter the world of data science with Python
keywords
Python data science, Practical statistics for data science, Statistical learning, Statistics using Python
Product ISBN
9781838984847