Hands-On Financial Trading with Python

Creating an effective system to automate your trading can help you achieve two of every trader’s key goals; saving time and making money. But to devise a system that will work for you, you need guidance to show you the ropes around building a system and monitoring its performance. This is where Hands-on Financial Trading with Python can give you the advantage.

This practical Python book will introduce you to Python and tell you exactly why it’s the best platform for developing trading strategies. You’ll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources.

Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics.

As you progress, you’ll pick up lots of skills like time series forecasting, covering pmdarima and Facebook Prophet.
By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization to help you get —and stay—ahead of the markets.

Type
ebook
Category
publication date
2021-04-29
what you will learn

Discover how quantitative analysis works by covering financial statistics and ARIMA
Use core Python libraries to perform quantitative research and strategy development using real datasets
Understand how to access financial and economic data in Python
Implement effective data visualization with Matplotlib
Apply scientific computing and data visualization with popular Python libraries
Build and deploy backtesting algorithmic trading strategies

no of pages
360
duration
720
key features
Get quality insights from market data, stock analysis, and create your own data visualisations * Learn how to navigate the different features in Python’s data analysis libraries * Start systematically approaching quantitative research and strategy generation/backtesting in algorithmic trading
approach
Complete with step-by-step explanations of essential concepts and practical examples, this book covers quantitative research methods, algorithmic trading strategies, data analytics, and prediction for financial datasets.
audience
If you’re a financial trader or a data analyst who wants a hands-on introduction to designing algorithmic trading strategies, then this book is for you. You don’t have to be a fully-fledged programmer to dive into this book, but knowing how to use Python’s core libraries and a solid grasp on statistics will help you get the most out of this book.
meta description
Build and backtest your algorithmic trading strategies to gain a true advantage in the market
short description
This book focuses on key Python analytics and algorithmic trading libraries used for backtesting. With the help of practical examples, you will learn the principle aspects of trading strategy development. The 14 profitable strategies included in the book will also help you build intuitions that will enable you to create your own strategy.
subtitle
A practical guide to using Zipline and other Python libraries for backtesting trading strategies
keywords
Quantopian, Finance modeling, python programming language, learn algorithmic trading, algorithmic trading python
Product ISBN
9781838982881