Apache Arrow is designed to accelerate analytics and allow the exchange of data across big data systems easily.
In-Memory Analytics with Apache Arrow begins with a quick overview of the Apache Arrow format, before moving on to helping you to understand Arrow’s versatility and benefits as you walk through a variety of real-world use cases. You'll cover key tasks such as enhancing data science workflows with Arrow, using Arrow and Apache Parquet with Apache Spark and Jupyter for better performance and hassle-free data translation, as well as working with Perspective, an open source interactive graphical and tabular analysis tool for browsers. As you advance, you'll explore the different data interchange and storage formats and become well-versed with the relationships between Arrow, Parquet, Feather, Protobuf, Flatbuffers, JSON, and CSV. In addition to understanding the basic structure of the Arrow Flight and Flight SQL protocols, you'll learn about Dremio’s usage of Apache Arrow to enhance SQL analytics and discover how Arrow can be used in web-based browser apps. Finally, you'll get to grips with the upcoming features of Arrow to help you stay ahead of the curve.
By the end of this book, you will have all the building blocks to create useful, efficient, and powerful analytical services and utilities with Apache Arrow.
Use Apache Arrow libraries to access data files both locally and in the cloud
Understand the zero-copy elements of the Apache Arrow format
Improve read performance by memory-mapping files with Apache Arrow
Produce or consume Apache Arrow data efficiently using a C API
Use the Apache Arrow Compute APIs to perform complex operations
Create Arrow Flight servers and clients for transferring data quickly
Build the Arrow libraries locally and contribute back to the community