Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf.
We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges.
As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text.
In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining.
By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Recognize the importance of interpretability in business
Study models that are intrinsically interpretable such as linear models, decision trees, and Naïve Bayes
Become well-versed in interpreting models with model-agnostic methods
Visualize how an image classifier works and what it learns
Understand how to mitigate the influence of bias in datasets
Discover how to make models more reliable with adversarial robustness
Use monotonic constraints to make fairer and safer models