Learn Amazon SageMaker.

Amazon SageMaker enables you to quickly build, train, and deploy machine learning models at scale without managing any infrastructure. It helps you focus on the machine learning problem at hand and deploy high-quality models by eliminating the heavy lifting typically involved in each step of the ML process. This second edition will help data scientists and ML developers to explore new features such as SageMaker Data Wrangler, Pipelines, Clarify, Feature Store, and much more.
You'll start by learning how to use various capabilities of SageMaker as a single toolset to solve ML challenges and progress to cover features such as AutoML, built-in algorithms and frameworks, and writing your own code and algorithms to build ML models. The book will then show you how to integrate Amazon SageMaker with popular deep learning libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. You'll also see how automating your workflows can help you get to production faster with minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and SageMaker Model Monitor to detect quality issues in training and production.
By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.

Type
ebook
Category
publication date
2021-11-26
what you will learn

Become well-versed with data annotation and preparation techniques
Use AutoML features to build and train machine learning models with AutoPilot
Create models using built-in algorithms and frameworks and your own code
Train computer vision and natural language processing (NLP) models using real-world examples
Cover training techniques for scaling, model optimization, model debugging, and cost optimization
Automate deployment tasks in a variety of configurations using SDK and several automation tools

no of pages
554
duration
1108
key features
Build, train, and deploy machine learning models quickly using Amazon SageMaker * Optimize the accuracy, cost, and fairness of your models * Create and automate end-to-end machine learning workflows on Amazon Web Services (AWS)
approach
Use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.
audience
This book is for software engineers, machine learning developers, data scientists, and AWS users who are new to using Amazon SageMaker and want to build high-quality machine learning models without worrying about infrastructure. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.
meta description
Swiftly build and deploy machine learning models without managing infrastructure and boost productivity using the latest Amazon SageMaker capabilities such as Studio, Autopilot, Data Wrangler, Pipelines, and Feature Store
short description
This updated second edition of Learn Amazon SageMaker will teach you how to move quickly from business questions to high performance models in production. Using machine learning and deep learning examples implemented with Python and Jupyter notebooks, you’ll learn how to make the most of the many features and APIs of Amazon SageMaker.
subtitle
A guide to building, training, and deploying machine learning models for developers and data scientists
keywords
data science; software engineering; deep learning with python; AWS cloud; aws cloud practitioner; AWS architect; ai/ml
Product ISBN
9781801817950