Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL.
Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning.
As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls.
By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems.
Model and solve complex sequential decision-making problems using RL
Develop a solid understanding of how state-of-the-art RL methods work
Use Python and TensorFlow to code RL algorithms from scratch
Parallelize and scale up your RL implementations using Ray's RLlib package
Get in-depth knowledge of a wide variety of RL topics
Understand the trade-offs between different RL approaches
Discover and address the challenges of implementing RL in the real world