OpenCV is a native cross-platform C++ library for computer vision, machine learning, and image processing. It is increasingly being adopted in Python for development. This book will get you hands-on with a wide range of intermediate to advanced projects using the latest version of the framework and language, OpenCV 4 and Python 3.8, instead of only covering the core concepts of OpenCV in theoretical lessons. This updated second edition will guide you through working on independent hands-on projects that focus on essential OpenCV concepts such as image processing, object detection, image manipulation, object tracking, and 3D scene reconstruction, in addition to statistical learning and neural networks.
You’ll begin with concepts such as image filters, Kinect depth sensor, and feature matching. As you advance, you’ll not only get hands-on with reconstructing and visualizing a scene in 3D but also learn to track visually salient objects. The book will help you further build on your skills by demonstrating how to recognize traffic signs and emotions on faces. Later, you’ll understand how to align images, and detect and track objects using neural networks.
By the end of this OpenCV Python book, you’ll have gained hands-on experience and become proficient at developing advanced computer vision apps according to specific business needs.
Generate real-time visual effects using filters and image manipulation techniques such as dodging and burning
Recognize hand gestures in real-time and perform hand-shape analysis based on the output of a Microsoft Kinect sensor
Learn feature extraction and feature matching to track arbitrary objects of interest
Reconstruct a 3D real-world scene using 2D camera motion and camera reprojection techniques
Detect faces using a cascade classifier and identify emotions in human faces using multilayer perceptrons
Classify, localize, and detect objects with deep neural networks